Economic Valuation of Bee Pollination Services: Implications for Farm Management and Policy

Adam G. Drucker

a.drucker@cgiar.org

International Livestock Research Institute

(ILRI) –Ethiopia

Workshop on Solitary Bees: Conservation, Rearing and Management for Pollination Beberibe, Ceará April 26-30, 2004

Outline

- Conceptual background to environmental economics
- Why value pollination services?
- What values need to be considered?
- How do we know pollination services are likely to be economically important?
- What methods exist for valuing pollination services and what are the constraints to carrying this out?
- Results and main findings of existing valuation studies
- Conclusions and ways forward/next steps

Conceptual Background I (Economics)

- Economics is about the efficient allocation of scarce resources with diverse alternative uses
- Can provide insight into the desirability of incurring environmental costs and benefits given the objective of increasing "satisfaction"/social welfare

Conceptual Background II (Externalities)

- Efficient allocation of resources requires consideration of EXTERNALITIES (both positive and negative)
- Process of agricultural modernisation results in the loss of natural pollination services (negative externality)

Why value pollination services?

- Determine whether the loss of pollination services is economically significant
- CBD 2000 International Initiative for the Conservation and Sustainble Use of Pollinators. Action plan recognises need for improved understanding of economics of pollination (SBSTTA-7)

Conceptual Background III (Values)

- Direct Use Values (honey, wax, etc.)
- Indirect Use Values (ecosystem services - pollination of domesticated and wild plants, maintenance of ecosystems and landscapes)
- Non-use values (option and existence values)

Importance of Pollinators

- 30% of 1,500 crop plant species depend on bee and other insect pollination (Buchmann, 1996)
- Production of bee wax, honey and other products
- Wild plant species depend on bee and other insect pollination
- Maintenance of agro-ecosystems and landscapes

Approaches to Pollination Service Valuation

- Market value of all insect pollinated crops
- Market value of main insect pollinated crops
- Only those crops pollinated by honey bees
- Include the value of crops grown from seed derived bee-pollinated plants
- Include legume crops and livestock products derived from bee-pollinated plants
- Include bee-pollinated legume crops that reduce nitrate fertiliser requirements
- Consumer surplus approach (as above but accounting for price changes and substitutes)

Constraints to Valuation of Pollination Services

- More precise information is required with regard to
 - Pollination needs of species and varieties of crops (and wild plants)
 - Effectiveness of particular pollinators
 - Value of locally marketed crops (usually ignored in national accounts)
 - Clearer understanding of farm-level costs and benefits of different crop and pollination systems

Methods used by Existing Pollination Valuation Studies

- Majority focus on contribution made by honey bees (pollination of 73% of world's crops)
- Majority use the following formula
 Pollination Service Value = V x D x P
 - -V = Annual value of the crop
 - D = Dependency of the crop on insect pollinators (assumption: D= 0.9 or 0.5 or 0.1)
 - P = Proportion of (effective) insectpollinators that are honey bees (assumption

Results of Existing Pollination Valuation Studies

- Global: US\$ 65-70 billion
- UK and England: GBP120m-138m (honey bees). GBP172m in total
- USA: US\$1.6 \$8.3 billion (honey bees).
 US\$4 billion increase 1987 2000
 \$4.1-\$6.7 billion (other pollinators)
- Yucatan, Mexico: US\$1.1-\$9.6 million p.a.
- Canada: C\$444 (1990) C\$782 million (1998)
- Australia: A\$1.2- 1.7 billionNew Zealand: NZ\$3.1 billion

Main Findings of Valuation Studies I

- Value of pollination services are significant
 - Many times the value of bee products
 - Value of commercial services small compared to that provided by nature
- Benefit/cost ratio of using commercial services is high
- Overall value of pollination services has grown significantly over past decade

Main Findings of Valuation Studies II

- In addition to crops, seed production, livestock/pasture production and soil fertility are also significantly influenced by pollination
- Aesthetic/existence values for pollinators and the agroecosystems they maintain may be substantial but have not been calculated to date.
- Incidence of costs may fall equally on consumers and producers

Conclusions I (Why value pollination?)

- Identifying the economic value of pollination services can provide
 - decision-makers with an effective argument for conservation
 - farmers with a better understanding of the relatives costs/benefits of certain agricultural practices

What needs to be done I (How can we value pollination services?)

- Overcome information constraints through:
 - Research
 - Awareness-raising
 - Capacity building

specifically with regard to:

- pollination needs of crops species/varieties
- effectiveness of particular pollinators
- farm-level costs/benefits of crop and pollination systems

Conclusions II ("Weitzman" Approach)

- Economic valuation of pollination services can support
 - the identification of conservation priorities
 - the design of cost-efficient bee diversity conservation programmes

What needs to be done II ("Weitzman" Approach)

- Measure of genetic diversity/distance between bee species
- Index of extinction probabilities
- (Net) conservation costs per species

Conclusions III (Policy Instruments and Mechanisms)

Need to support design of policy instruments and mechanisms that promote sustainable use of bee pollinators

What needs to be done III (Policy Instruments and Mechanisms)

- Pollination as integral component of sust. agric. systems &cropping practices
- Maintenance/management of natural areas for pollinators
- Restoration of pollinators and habitats
- Internalisation of costs of current agricultural practices
- Enforcement of existing environmental management laws

What needs to be done III (continued)

- Income support for farmers for environmentally-friendly practices
- Change in national accounts compilation
- Development of niche markets for sustainably produced farm products (certification, trade polices, legal and economic measures)

